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A New Equation of State for Square-Well Molecules I 

C. P. Bokis 2 and M. D. Donohue 2"3 

This paper presents a new equation of state for the square-well fluid based on 
perturbation theory. This equation has the exact second virial coefficient 
behavior, converges to the correct mean-field behavior at high densities, and 
accurately interpolates between the two limits. Monte Carlo simulations were 
performed to evaluate the limiting behavior of the theory in the dilute-gas 
regime. Comparison of the theory with the simulation results shows excellent 
agreement between the equation-of-state predictions and the data. 
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1. INTRODUCTION 

There are two very different regimes in equation-of-state behavior. One is 
the low-density region where the virial equation provides the exact limiting 
behavior. In this region, the energies are Boltzmann-weighted and the 
thermodynamic properties (compressibility factor, Helmholtz free energy, 
and internal energy) depend exponentially on inverse temperature. The 
other regime is at liquid-like densities. At these conditions, the behavior 
approaches mean-field behavior and the thermodynamic properties can be 
calculated very accurately by perturbation theory. 

In this paper, we present a relatively simple, closed-form equation of 
state that represents the properties of square-well spherical molecules 
accurately. This new equation reduces to the exact second virial coefficient 
at low densities, it gives nearly exact mean-field behavior at high densities 
and interpolates between these two limits with remarkable accuracy. 
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2. EQUATIONS OF STATE FOR THE ATTRACTIVE TERM 

The square-well potential, despite its unrealistic discontinuities, has 
been investigated extensively due to its simplicity and due to the fact that 
it captures the essential characteristics of a fluid. A great amount of 
computer simulation work [ 1-3 ] for systems whose molecules interact via 
the square-well potential has provided a basis for comparison and testing 
of the various theories that have been developed. 

In 1972, Alder et al. [ 1 ] performed molecular dynamics simulations to 
calculate the thermodynamic properties of the square-well fluid (internal 
energy and pressure) over a large range of temperature and density. They 
also developed an equation to describe the Helmholtz free energy for the 
square-well fluid based on the perturbation expansion of the free energy of 
a fluid of hard spheres with added attractive (square-well) potentials. For 
this purpose, they derived an equation for square-well molecules by taking 
the Taylor-series expansion of the reduced excess Helmholtz free energy 
about the infinite temperature (hard-sphere) limit. They also derived a 
statistical mechanical expansion equivalent to the Taylor-series expansion, 
in which the individual terms contain moments of the perturbing potential 
averaged over hard-sphere distribution functions. Corresponding coef- 
ficients in the two expansions provide separate but identical methods for 
the calculation of the coefficients in the free energy expansion. Alder et al. 
[1] evaluated the first four terms of the perturbation expansion as a 
function of density by fitting the expressions to their molecular dynamic 
simulation results. The resulting expression has the form 

Aatt- ~__~.. ,4 (E)2 (~)3 ( ~ )4 
N k T - k T  l+ ~-~ A2 + -~  A3 + -~  A4 

4 9 / e \" 
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where A art is the attractive contribution to the Helmholtz free energy, e is 
the depth of the square-well potential, ~ =pa3/V"2 (a is the molecular 
diameter and p = N/V, N is the number of molecules, and V is the volume), 
k is Boltzmann's constant, T is the temperature, A~, A2, A3, and A 4 are the 
first-, second-, third-, and fourth-order perturbation terms, respectively, 
and are functions only of density, and A,,, are 27 universal constants in the 
density polynomials of A~, A_,, A 3, and A 4 (.4 .... were evaluated by fitting 
molecular dynamics simulations [ 1 ]). This expression is in excellent agree- 
ment with the simulations (at last in the range of the fit of the simulation 
data) and has been used extensively by many researchers as a basis for 
testing new models. 
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There are two disadvantages associated with Eq. (1). First, it con- 
tains three zeroth-order elements, that is, three A,,0 terms (A2o = 
-0.12495816 x 10-3, A3o =-0.51235572 x 10-4, A4o -- +0.25364174 x 10-2). 
These nonzero, zeroth-order elements are artifacts of the approximate 
fitting routine used and they have no effect on the pressure. Nevertheless, 
their finite values are unrealistic, since they result in a nonzero Helmholtz 
free energy at the zero-density limit. Second, the second virial coefficient 
calculated from Eq. (1), although quite accurate, is not exact. The exact 
second virial coefficient for the square-well potential is known, and given 
by [4] 

2 / r t y  3 27rO -3 
B = - -  - -  ( R  3 - -  1 )(e " /kr-  1 ) (2) 

3 3 

where B is the second virial coefficient and R -  1 is the range of the square- 
well attraction (R is taken here to be 1.5, as also is the case with the 
simulation data of Alder et al. [ 1 ] and, therefore, in Eq. (1)). A series 
expansion of the exponential in the second (attractive) term of Eq. (2) leads 
to 
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B art = -- - -  (R 3 -- 1 ) 
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The second virial coefficient can be evaluated from Alder's expression [ 1 ] 
by taking the density derivative of Eq. (1) at the limit of zero density. This 
procedure results in 

2 ~ f f  3 
B art = - - - -  ( R  3 - -  1 ) 

3 
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A comparison of Eqs. (3) and (4) shows that Alder's [ 1 ] expression gives 
the exact coefficient for the first-order term; however, for the subsequent 
terms this is not the case. There is a -6 .1% error in the second-order coef- 
ficient, a 1.2 % error in the third-order coefficient, and a 76.5 % error in the 
fourth-order coefficient, while the higher-order terms are ignored com- 
pletely. Of the above errors, the most essential for the calculated second 
virial coefficient is that for the second-order coefficient (0.4693, as opposed 
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to the exact value of 0.5). This error occurs because of the approximate 
way of fitting the perturbation terms [ 1 ], which ignored the correct limit- 
ing behavior. In particular, the error in the second-order coefficient in 
Alder's [ 1 ] expansion is due to the fact that the constant A21 is not exactly 
one-half the value of A n as it should be but, rather, ~ 0.47An. This also 
is the reason for the errors in the third- and fourth-order coefficients. These 
errors result in a small but significant discrepancy of Eq. (4), especially at 
low temperatures. [At high temperatures the first-order term dominates 
and Eq. (4) becomes very accurate.] 

Here we propose a new way of normalizing the Boltzmann factors 
[5],  which uses Alder's [1 ] first- and second-order perturbation terms to 
describe the dilute-gas region and the mean-field behavior at high densities 
and to interpolate between these two limiting behaviors. This expression 
has the form [ 5 ] 

~ee = Ut exp \UI kTJ (5) 

where U~ and U2 are the first- and second-order perturbation terms for the 
internal energy. The expression for the excess (attractive) Helmholtz free 
energy can be obtained by integrating the expression for U with respect to 
inverse temperature. This process yields 

A att UI e 
NkT-U,~2[exp(-~l--~-I 1 (6) 

A series expansion of Eq. (6) gives 

A "tt [ • U,) // E ~2 //U2X~2// ~ ~3 
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Equation (6) gives the exact second virial coefficient if Uz/Ut is unity at the 
zero density limit. The use of Eqs. (6) and (7) requires expressions for U1 
and U= as functions of density. While we could use the polynomials given 
by Alder et al. [ 1 ], the equation of state is much simpler if the ratio Uz/UI 
is written as a single function of density rather than as a ratio of two poly- 
nomials. Therefore, we write the ratio Uz/UI as a polynomial of the form 

v =  = I + y,  c,,,7 k (8) 
U1 k 
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Table I. Constants in the Polynomial Functions Urn(v/) and U2/Un(tl) 

1281 

k ~ 

1 2 3 4 5 6 7 

D k -9.50005 -13.2655 -3.08360 20.2318 30.5450 10.3126 0.0 
Ck --5.41651 8.41582 6.67298 --19.3900 2.04454 --9.92956 11.9460 

where r/is the reduced density (~/= npa3/6). The expression for U~ is given 
by Alder et al. [ 1 ], and in terms of a polynomial in ~/it has the form 

6 
Ut = ~ Dkrl k (9) 

k = l  

To evaluate the coefficients Ck, we fit Eq. (6) to Alder and co-workers' 
[1]  expression for the Helmholtz free energy [Eq . (7 ) ] .  We used the 
original UI expression [Eq. (9)] and Eq. (8) for the ratio U2/U~. The 
resulting Ck coefficients are given in Table I, together with the Dk coef- 
ficients for U~ (both quantities are given as polynomials of r/). Equa- 
t ion(5),  and therefore Eq. (6), has the exact second virial coefficient 
behavior. Table II presents the first four coefficients in the second virial 
coefficient expression for Eq. (6) and Alder's fourth-order perturbation 
expansion; the exact values for the square-well potential also are included 
for comparison. 

Figure 1 shows a plot of the higher-order perturbation terms, A2, A3, 
and /14,  a s  functions of the reduced density, r/. The symbols represent 
molecular simulation data [ 1 ]; error bars for some data points also are 
shown. The dashed lines represent calculations from Alder's expression, 
while the solid lines represent the new expressions for these perturbation 
terms. It is seen that the predictions of the proposed model for A2, A3, 
and a 4 a r e  close to Alder's calculations and lie nearly within the error bars 
of the simulation data. However, it is important to note that at moderate 

Table H. First Four Constants in the Second Virial Coefficient Expansion 

Constant Exact (SW) Alder et al. r 1 ] Our work 

1st 1.0 1.0 1.0 
2nd 0.5 0.4693 0.5 
3rd 0.1667 0.1687" 0.1667 
4th 0.04167 0.07355 0.04167 
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Fig. 1. Plot of the second-, third-, and fourth-order perturba- 
tion terms calculated with AIder's expressions (dashed lines) and 
the expressions from the proposed model [Eq. (7); solid lines]. 
The filled symbols correspond to hard-sphere fluctuation 
averages (squares, 108 molecules; diamonds, 500 molecules), 
and the open squares correspond to extrapolation of square-well 
internal energy data (108 molecules). 

and high densities, the higher-order terms are negligible in comparison to 
the first-order term; therefore, the slight deviation of our model with Alder 
and co-workers' [ 1 ] expression does not introduce any observable error at 
these densities. At low densities, our model [Eq. (5)] is more accurate than 
Alder et al.'s [ 1 ] expansion, since it reduces to the exact second virial 
coefficient limit. 

In Fig. 2, we plot the ratio U/UI versus r/using Alder's [ 1 ] perturba- 
tion expansion and the model proposed in this paper [Eq. (5)]. The filled 
squares on the ordinate represent the exact zero-density limiting behavior 
(Boltzmann weighted energies). The two models are nearly identical, except 
at the dilute-gas region. In these low densities, our equation reduces to 
the correct second virial coefficient limit, whereas Alder's model has an 
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Fig. 2. Plot of the ratio of internal energy over the mean-field value 
(U I) as a function of the reduced density for reduced temperatures 
kT/t = 1.5, 2.0, 3.0, and 4.0. Dashed lines correspond to Alder et al.'s 
[1] expansion; solid lines correspond to the proposed model 
l'Eq. (5)], and the filled squares on the ordinate correspond to the 
exact zero-density limiting behavior. 

erroneous behavior  (the intercept of  the solid lines in Fig. 2 correspond 
to the second virial coefficients). In addition, our  equat ion converges to 
mean-field behavior  as density increases at the correct rate, as shown in 
Fig. 2. 

3. C O M P A R I S O N  W I T H  S I M U L A T I O N S  

A large number  of  simulations for the square-well fluid can be found 
in the literature; however,  we were specifically interested in investigating 
the behavior  of  the model  proposed in this paper  compared  with Alder 
et al.'s expression [ 1 ] in the dilute-gas region, where, to our  knowledge, no 
simulation data  exist. Therefore, we performed N V T  (canonical ensemble) 
Monte  Carlo simulations of  square-well spherical molecules, at number  
densities pO "3= 0.005, 0.075, 0.010, 0.020, and 0.030. For  each value of  the 
density, temperature values kT/e = 1.3, 1.5, 1.75, 2.0, 2.5, and 3.0 were 
studied. 
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The simulation cell was a cube with size 30 times the molecular 
diameter (this was found to be a sufficiently large size, so that the results 
become independent of the size of the cell). The number of molecules was 
adjusted to achieve the desired density, and periodic boundary conditions 
were employed in all three dimensions. Each simulation consisted of three 
phases: initial configuration, equilibration, and simulation (averaging) [6] .  
At each value of the number density, the initial configuration at the lowest 
temperature (kT/e=l.3) was generated by random insertion of the 
molecules, so that a configuration flee of overlaps was produced. For the 
higher temperatures (of the same density), the initial configurations were 
taken from the final configuration of the system at the immediately lower 
temperature. Once the initial configuration was generated, the system was 
further equilibrated using the Metropolis algorithm [7] ,  to ensure that the 
average properties of the system are independent of the initial configuration. 
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Fig. 3. Comparison of the internal energy predicted by Alder et al.'s 
perturbation expansion [1] (dashed lines) and by the proposed 
closed-form expression [Eq. (5); solid lines], at number densities 
ptr3=0.005 and 0.01. Monte Carlo simulation data (filled squares) 
are also included. 
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Two million equilibration steps were used for the low temperature, and 
1 million steps at the higher temperatures. Finally, the simulation (averaging) 
part consisted of 2 million attempted moves after each system had 
equilibrated. 

The simulation results, as well as predictions with the theories dis- 
cussed in this paper, are illustrated in Fig. 3, where a plot of U/Ne versus 
kT/e is presented. Monte Carlo data and equation-of-state calculations 
are plotted for two densities, pa3=0.005 and 0.01. The Alder et al. [1] 
fourth-order perturbation expansion is not as accurate as one would like, 
especially at low temperatures, where errors are of the order of 6-7%. 
However, the equation proposed here is in excellent agreement with the 
simulations over the entire temperature range. 

4. CONCLUSIONS 

In this paper, the thermodynamic properties of square-well spherical 
molecules are investigated using perturbation theory. The performance of 
the Alder et al. fourth-order perturbation expansion is evaluated. This 
equation is very accurate, except at the second virial coefficient limit, where 
there are deviations between the model and the exact behavior for the 
square-well fluid. 

A new model is proposed to normalize the low-density Boltzmann- 
weighted behavior with increasing density. This approach involves the first 
two terms of perturbation theory and results in a simple, closed-form equa- 
tion of state for the square-well fluid. The advantage of this new equation 
is that it has the exact second virial coefficient behavior, and it converges 
to the mean-field behavior at the correct rate. We performed Monte Carlo 
simulations at the dilute-gas region to evaluate the limiting behavior of our 
new model and compare it with the other methods. We found that the 
equation proposed in this paper is in excellent agreement with the data 
over the entire temperature range. 

This new model can be extended to chain molecules easily, using the 
method of the density-dependent shape parameters for the repulsive and 
the attractive terms, as described by Bokis et al. [8]. The resulting chain 
equation of state is expected to be in very good agreement with computer 
simulation data for square-well chain molecules. In addition, we are 
planning to extend this new model to mixtures of square-well molecules 
of different sizes and/or interaction energies. In doing so, we will use 
mixing rules from statistical mechanics, which will retain the quadratic 
composition dependence of the mixture second virial coefficient and, at the 
same time, give accurate liquid-phase calculations. 
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